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Motivation

• Design and control of physics-based sys-
tems commonly lead to optimization
problems constrained by Partial Di�er-
ential Equations (PDEs)

• Many of these problems are inherently
unsteady:

� Static systems without steady-state
solutions (e.g. �ow problems with sep-
aration and turbulence)

� Dynamic systems (e.g. deforming do-
main problems such as �apping �ight,
wind turbines, etc)

• Unsteady PDE-constrained optimization

Vertical Axis Wind Turbines

Experimental design by G. Dahlbacka (LBNL) and collaborators
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Introduction

• Consider a general optimization problem involving a system
of conservation laws on a deforming domain, with solution U
and optimization parameters µ:

minimize
U , µ

∫ Tf

T0

∫
Γ

f(U ,µ, t) dS dt

subject to
∂U

∂t
+∇ · F (U ,∇U ,µ) = 0

• Use high-order spatial and temporal discretizations and fully-
discrete adjoint-based gradients to combat the high cost of
unsteady optimization

• Application to �ow-constrained trajectory optimization and
energetically optimal �apping motions at constant thrust

High-Order Numerical Discretization

• Discretize the system of conservation laws domain using a
high-order accurate Arbitrary Lagrangian-Eulerian (ALE)
Discontinuous Galerkin Finite Element Method (DG-FEM)

• Introduce a time-dependent di�eomorphism G between a
�xed reference domain V and the physical domain v(t)
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• Transform state variables according to UX = gU , where g =
det(∇XG), resulting in a modi�ed system of conservation
laws de�ned on the reference domain

∂UX
∂t

∣∣∣∣
X

+∇X · FX(UX , ∇XUX) = 0

• Discretize in space with DG-FEM to yield the semi-discrete
system of equations

M
∂u

∂t
= r(u,µ, t)

• Discretize in time with a Diagonally Implicit Runge-Kutta
(DIRK) scheme to obtain the fully-discrete equations

u(0) = u0(µ)

u(n) = u(n−1) +

s∑
i=1

bik
(n)
i

Mk(n)i = ∆tnr
(
u
(n)
i , µ, t

(n)
i

)
• Discretize the output functional J =

∫ Tf

T0

∫
Γ

f(U ,µ, t) dS dt

in a solver-consistent manner, i.e., the spatial integration uses
the shape functions of the DG-ALE scheme and the temporal
integration is performed with the same DIRK scheme

Fully-Discrete Adjoint Method

• The fully-discrete adjoint equations corresponding to the
global numerical discretization of the equations are

λ(Nt) =
∂J

∂u(Nt)

T

λ(n−1) = λ(n) +
∂J

∂u(n−1)

T

+
s∑
i=1

∆tn
∂r

∂u

(
u
(n)
i , µ, t

(n)
i

)T
κ
(n)
i

MTκ
(n)
i =

s∑
j=i

aji∆tn
∂r

∂u

(
u
(n)
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(n)
i

)T
κ
(n)
j

• The adjoint states, λ(n) and κ
(n)
i , can be used to reconstruct

the gradient of an output functional with respect to parame-

ters, a crucial requirement for gradient-based optimization

dJ

dµ
=
∂J

∂µ
−λ(0)T ∂u0

∂µ
−

Nt∑
n=1

∆tn

s∑
i=1

κ
(n)
i

T ∂r

∂µ
(u

(n)
i , µ, t

(n)
i )

• Requires evolution of linear equations for each functional J
whose derivative is desired. In the context of gradient-based
optimization, this will be done for the objective function as
well as all the constraint equations

Energetically Optimal Trajectory

• Consider the trajectory optimization problem

minimize
h(t), θ(t)

∫ T

0

∫
Γ

F · v dS dt

subject to h(0) = h′(0) = h′(T ) = 0, h(T ) = 1

θ(0) = θ′(0) = θ(T ) = θ′(T ) = 0

• h(t), θ(t) discretized via cubic splines with 5 knots

• Optimization cases:

( ) h(t) = 1
2 (1− cos(πt/T )), θ(t) = 0

( ) h(t) = 1
2 (1− cos(πt/T )) �xed, θ(t) variable

( ) h(t), θ(t) variable
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Vorticity �eld at three time instances for the three trajectories

Energetically Optimal Flapping

• Consider the trajectory optimization problem

minimize
h(t), θ(t)

∫ 3T

2T

∫
Γ

F · v dS dt

subject to

∫ 3T

2T

∫
Γ

Fx dS dt = 0

h(k)(t) = h(k)(t+ nT ), θ(k)(t) = θ(k)(t+ nT )

• h(t), θ(t) discretized via amplitude/phase of 5 Fourier modes

• Optimization cases:

( ) h(t) = − cos(0.4πt/T ), θ(t) = 0

( ) h(t) = − cos(0.4πt/T ) �xed, θ(t) variable

( ) h(t), θ(t) variable
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Conclusions

• A high-order DG-DIRK discretization of general conservation laws with a mapping-based ALE formulation for deforming domains

• A fully-discrete adjoint method for computing gradients of output functionals and constraints in optimization problems

• Framework demonstrated on the computation of energetically optimal motions of a 2D airfoil in a �ow �eld with constraints

Future Research

• Application of the method to real-world 3D problems

• Extension of the method to multiphysics problems, such as FSI

• Extension of the method to chaotic problems, such as LES �ows, where

care must be taken to ensure the sensitivities are well-de�ned

• Incorporation of an adaptive model reduction technology to further

reduce the cost of unsteady optimization


